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Abstract—A displacement variation which incorporates the effects of transverse shear and normal
strain is used to formulate the equations of equilibrium for a laminated beam subjected to external
foads and temperature fields. The interlaminar stress ficld obtained from the present method is
compared to those obtained from the theory of elasticity and the elementary beam theory. The
numerical results indicate a substantial difference in the stress fields obtained from the present and
the elementary beam theory for the cases of transverse and sinusokial temperature ficlds. However,
for uniform temperature distributions, the stresses are in close agreement,

1. INTRODUCTION

One of the first investigations dealing with thermally induced strains in bi-metallic beams
was conducted by Timoshenko[1] in 1925. Elementary beam theory was used to obtain
bending and axial stresses for beam sections sufficiently far away from the free end of the
beam. More recent studies of the interlaminar stresses in laminated beams subjected to
thermal and external loads are found in Refs.[2-6).

In general, most of the thermal analyses on laminated beams are based on the
Bernoulli-Euler hypothesis which neglect the effect of transverse shear and normal
deformations[7]. This approach is satisfactory for thin homogeneous beams. However, if
the beam is thick or transversely heterogeneous, the transverse shear stresses may be large
in comparison to the longitudinal stresses. Hence, the neglect of these transverse stresses
and strains may lead to errors in the evaluation of the stress field in laminates.

The purpose of the present work is to determine the stress field of a laminated beam
subjected to a temperature field. In order to describe the deformation field of each laminate
accurately, the Bernoulli-Euler assumptions are relaxed by using displacement functions
which consider the existence of the transverse strains[9,10]. A system of 2(n —1)
differential equations are formed by expressing the equilibrium equations in the longi-
tudinal and transverse directions at the interface between the laminae. The system of
equations are then solved for the 2(n — 1) unknown transverse shear and normal stresses.

To illustrate the proposed procedure, the stress field of a simply supported beam
subjected to a sinusoidal load is examined under constant, uniform, quadratic and
sinusoidal temperature variations.

2. FORMULATION

In this section, the beam will be treated to have n laminae as indicated in Fig. 1. Each
lamina, i, has thickness 1, elastic constant E, Poissons ratio v, and a coefficient of thermal
expansion o,

2.1 Displacement variation
The displacement variation to be used within each lamina can be written as

Fwy; Fmy,
U, =y — z;Dwo + J‘ e,dz — f (z;— Z)De,, dz H
Iml in@
and
5
u, = wy + f e, dz (2)
im0

where u, and u, are the displacements in the longitudinal and transverse directions
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Fig. 1. Geometry of a laminated beam,

respectively. The integral terms represent the transverse normal and shear strain correction
terms[9, 10]. Upon discretizing the liminated beam into n thin laminae of constant
thickness ¢, and assuming that the strains within each thin lamina are linear, eqns (1) and
(2) after further simplification are expressed in the summation form as follows

i i rz
U, =ty — 20wy + E tey, + e, (z;—it)— Z Deuj [z,l + 5(1 — 2j}]

j=1 i=1
Z,-2 . / iztz
- De“f?z- (zit) — De,,, <-2——) 3
and
j=i
u, = wy+ Z fezz; + ey (z:i—1it) @

i=l

where e, and e, are interpreted as the constant average value of the strain within the ith
lamina.

2.2 Displacement-strain relations and constitutive equations
The corresponding strain functions for each lamina are obtained from Cauchy relations
given as

Ou,,
exx,- - ax (5)
and
ow,
€y = —é;' (6)

For the problem at hand the constitutive equations relating strain, stress, and
temperature variation are expressed by generalized Hooke's law as

O, = Cli (s, — 0T) + C3 (€, — ,T) Q)
and

0., = Cliz(ex, — 4 T) + Cis (€, — 4T} )]
where Ci;, Ci, and Ci; are plane stress material properties. Differentiating eqns (3) and

(4) to obtain the strains within each lamina according to eqns (5) and (6) and substituting
the strains into the constitutive relation, eqn (7), one obtains the thermoelastic relationship
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between stresses, neutral surface deformations, strains, temperature and material charac-
teristics for the ith lamina. The longitudinal stress, o,,, then can be expressed as

Oy, = C'iIDuO - C'ilzr'Dzw + C’ll Z tDex:_, + C,;lDexz,- (Z,-— ll)

j=1

i 2 2
- Cvlll Z Dzezzj [Z,t + % (1 - 2])] - C'ilDzezz,-% + C'ilDzezz,- (Z,-it)
J=1
‘ i’r? .
- C‘llDzezz,- (T) + C'ISezz,' - [Cll + ClJ]aiTi' (9)

2.3 Neutral surface deformations
The force and bending moment resultants acting on the laminated beam can be found
by integrating the longitudinal stress of eqn (9) through the total thickness of the laminate.

im: ] it
N=hJ‘ a,“,_dz’=hz.[ 0, dz (10)
i=0 =l J@i-1)y
and
fmz n it
T=h'[ an,z'df=hZJ- 0, dz. an
i=0 i=l J@i—-1)n

Since the resultant can be evaluated for a given loading, eqns (10) and (11) can be
rewritten to express the derivatives of the neutral surface deformations (d*/dx?) and
(d’w/dx?), as functions of the force and moments resultants and the unknown transverse
shear and normal strain derivatives. This in return enables one to express eqn (9) only as
a function of unknown transverse strains.

2.4 Continuity of stresses
For a thin lamina, the transverse stresses within each lamina may be expressed as an
average value of the adjacent interlaminar stresses as defined in Fig. 2.
From the constitutive equations, one can relate the strain in the ith lamina to the
adjacent interlaminar stresses. Hence, the normal and transverse shear strains can be
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Fig. 2. Definition of interlaminar stresses in the ith lamina.
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described as follows

(Tl.v + a! ; {3
(::: =i—,’£“_:-l)-—i—exx‘ l2
' 2CYy n o (12)
and
O, + 0%,
c‘"‘ o .___‘__..T_.(L'_l). (‘ 3)
2Cy

Since each lamina is assumed to be thin, the longitudinal strain e, in eqn (12) may be
expressed as a function of the normal force and moment resultants as given by the classical
beam theory. Since this substitution is made at the lamina level and only in eqn (12), its
effect should not hinder the over all accuracy of the proposed development.

2.5 Equations of equilibrium '
The equations of equilibrium in the longitudinal and transverse directions of a typical
beam section of Fig. 3 are as follows

Im2 a
f a“‘ dz —ol, +0l, =0 (14)
i=0
and
=z o,
— 0y, + a,,‘ + —-—1 dz =0. (15)

The substitution of eqns (9)—(13) into eqns (14) and (15) yields the matrix representation
of the equilibrium equations as follows

D’s,, Do, D},
[Fn + [GI] + [HI]
Do ;z(.. o D, D’ai,(_ o
o,l
X2\
+vicn]d L4+ {VIC}DN + {VICI}DN + {VIC}D’T + {VIC3}DT
a.l

Xn 1§

+{VIC4}Tm,+ {VIC6}D’e,, + {VIC5}Ds!,, + {VICT}Ds!, + {VIC8}Dc., (16)
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Fig. 3. Transverse normal and shear stresses acting on a section of the laminated beam.
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and

g,

H
2y Daxz;

+[HH1! : \={viC14}el, +{VICI3}Do’,,. an
a! Do, _,

Fym -y

2.6 Solution procedure

Equations (16) and (17) represent a system of 2(n — 1) non-homogeneous differential
equations with coefficients given by geometrical and material characteristics. The method
of undetermined coefficients is used to obtain the particular solution to the system of
differential equations given by eqns (16) and (17). At this point the homogeneous solution
is not addressed. In Refs. [9, 10], the homogeneous solution is interpreted as the transient
solution, therefore it is assumed at this point that the particular solution is of greater
importance.

3. NUMERICAL RESULTS

The example presented herein is the simply-supported heterogeneous beam of Fig. 4.
It consists of eight laminae of equal thickness. The material characteristics of the laminae
are given in Tables 1 and 2.

The moment, shear and upper surface tractions are given by

= (mnl)‘: sin (mnx/L) (18)
and
V= L cos (max/L) {19
mn
and
0., = — 100 sinmax/L (20)

where m is 4 and L is 24 in.
The temperature distributions that will be used are as follows

T =120 21)
and
=T, (x) 22)
and
T =T, sin(nx/L) (23)
z
t.,x Fal00 sin mwx
L
1"
w 7
[ b b . N
i 6" e e

Fig. 4. Simply-supported beam with a sinusoidal load.
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Table 1, Material layup for the laminated beams

Lamina | Material
1 Steel
2 Steel
3 Aluminum
4 Glass
S Glass
6 Aluminum
7 Steel
8 Steel

Table 2. Material properties of the laminated beam

Property Units Steel Glass |Aluminum ,
Poisson's Ratio .3 .25 .27
Young's Modulus psi  |30x10® | 7.2x10%] 10x10°
Shear Modulus psi |10x10° | 3.8x10°| 3.7x10°
Coefficient of ° =70 -6 -6
ey o et son | 1/ °F | 60x1077 | 5.4x207% | 13.3x10

and
T =T, (2z/H + 1)(x/LY. (24)
The interlaminar stresses may now be expressed as
ol = p;sinnx/6 25)
and
o}, = a;cos nx/6. (26)
Upon substituting eqns (18)—(24) and their respective derivatives into eqns (16) and (17),
one obtains a system of 2(n — 1) differential equations with the coefficients B, and «,. Please

note that “n” stands for the total number of laminae and which in this case is equal to
eight.

B 3.3 B «, 2.2
n’n nn nin
B’l-’l ﬁn-—l an—l
a,
L
+vicuy{ : Y={vic} 10‘2”"+{V1cx}19(;—"-{wc2} '0‘2""
[
100 L 100 n3n? 100 n

+ {VIC3} — {VIC4}Tm,— {VIC6} — - {vic} 27

L



Thermal stresses in laminated beams 585
and

B o
;] ~ [HH] ;’ %=0. (28)

ﬂn—l o,

Equation (28) is first solved for the vector {8} and the resulting expression is substituted
into eqn (27). Then the elements of the vector {«} in eqn (27) are found by solving the
final equation by the Gaussian elimination technique. The matrix representation of eqns
(27) and (28) lend:s itself conveniently for modular programming. This is accomplished by
assigning different subroutines to form the matrices that are dependent on geometry and
loading criteria. Tables 3—6 show the stress field in the laminated beam as obtained from
the present formulation and the elementary beam theory.

Table 3. Stress field for a simply-supported laminated beam under mechanical and thermal fields,
T =120°F, x =(L[2)

Classical Solution - Present Solution - Normal and Shear
Non-~-Deformable Normals Strain Correction
Stress psi Stress psi
Lamina | Material

xzg (%22 | Cwxp | %z Di‘f. %22y m‘t. Oxxy Di‘f.
1 Steel 47.58 | 5.00 [-540.68 { 51.33{-8.5] 5.82]- 6.4]|-556,32|- 2.8
2 Steel 108.14 | 20.34 §_443.30 |111.75-3.3{22.12|- 8.7|-432.10 |+ 2.5
3 Aluminum | 132,12 | 36.61 {136 34 [140.25]~6.1[38.75 (- 5.8]-120.13[+11.8
4 Glass 156.87 | 48.65 |- ¢8.36 {163.67!-4.3]|51.97|- 6. |- 74.03|- 6.8
5 Glass 155.49 | 63,33 68,36 |164.31|-5.6[69.00(- 8. 74.34 |- 8.9
6 Aluminum | 132.53 | 78.36 | 136,35 | 141.80|-6.9]|84.17|- 7. | 120.20]+11.8
7 Steel 109.12 | 86.11 1 443,30 [112.00(-2.6]/96.43|-5. | 432,10+ 2.5
8 |steel 46.50 | 88.00| 540,65 | S51.33|-8.5|/98.34[-6. | 556.32|- 2.8

lL.oad: Sinusoidal

Table 4. Stress field for a simply-supported laminated bcam under mechanical and thermal fields,
T=T,x) x=(L[2)

Classical Solution - ‘Presant Solution - Normal and Shear
Ron-Deformable Normals Strain Correction
Stress psi Stress psi
Lamina | Material
xzy %22y | Owxy | w2y Di‘f. %22, nx‘:. Oxx; m‘t.
Steel 33.97 | 0.35 [-387.00 | 35.17]~3.4| 0.38 |- 6.7|-405.28|-4.5
2 Steel 85.43 | 0.50 |-273.00 | 88.66|-3.6] 0.55]-10.0]-287.23|-4.7
3 Aluminum | 129.15 | 0.72 [-106.00 | 136.34|-5.1] 0.80}-11.1|-112,13]-5.4
4 Glass 143.00 | 6.86 |- 45.63 | 142,00+ .7} 7.25 |- 5.7|- 47.09]-4.4
5 Glass 142,95 |10.36 45.66 | 142.15] 0.0(11.36 - 7.7 47.00|-4.4
6 Aluminum | 129.15 {20.02 | 106.35 | 136.35]-5.1{22.15 [-10.6| 112.13}-5.3
? Steel 85.44 [28.11 | 273.76 | 88.00|-3,6(29.17 - 3.4 287.20(-4.9
8 Steel 33.92 |33.14 | 387.00] 35.17|-3.5136.13 |- 9.0] 405.28!-4.5

Load: Sinusoidal
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Table 5. Stress field for a simply-supported laminated beam under mechunical and thermal fields,
T=Tm 2z/H + 1P (x/LY, x =(L]2)

Classical Solution - Present Solution - Normal and Shear
Non-Deformable rformals Strain _Correction
Lamina | Material Stress psi Stress psi

ECTON LTI PR m‘{. ®az, Di\t Sxx, Di‘f.
1 Steel 23,34 6.05 |- 119.44] 27.32 }17.0] 0.06 [~20. +|-122.66-2.6
2 Steel 63.66 0.07 |- 92,33} 73.85 }[16.0) 0.08-14, |- 97.01}-5.1
3 Aluminum | 78,44 0.11 |- 72.11 98.50 [25.6| 0.13[-18.11- 76,31)~5.5
4 Glass . 93.10 0.93 {- 52.131112.9 {21.0} 1.27 {-36.6]~ 54.00/-3.7
5 Glass 94.00 1.48 52,91 1130 L2062 1.37 -26.3 54.331-3.7
[3 Aluminum { 78.31 3.64 72,324 99.16 [20.21 3.96 |- 9. 76.24{-5.1
7 Steel 63.33 4.85 92.00’ 74.68 L13.2 1 6.60 |36, 87.011~5.1
8 Steel 23.04 6,02 118,03} 29.15 |.26.5| 7.11}-18. 121.95)-3.2

Load: Sinusoidal

Table 6. Stress field for a simply-supported laminated beam under mechanical and thermal fields,
T=T,sinx/L, x={L[2)

Classical Solution - Present Solution - Normal and Shear
Non-Deformable Normals Strain Correction
Lamina | Material Stress psi Stress psi

o“i Pazy | xxg | %xeg Di‘f. %2z, oi‘t. %xx Di‘t‘.
1 Steel 38,58 | 3.00 |-413.21| 40.02/-.3.50 3.85]-28. |-431.05/-4.3
2 Steel 80.32 1 7.26|-257.61| 91.03}-13.7] s8.00]-10. |-272.93|-5.6
3 Aluminum | 125.43 ] 12,35 |- 88.32' 140,24 ~11.8 15.10p22. |. 95.211-7.9
4 |Glass 138.16 | 29.69 |- 25.64] 159.49.15.4 35 3518, |- 27.33-8.0
5 |Glass 139.03 | 34,81 | 25.32! 158.47) 13,9 38.10} 5.0 27.33-3.0
6 | Aluminum | 126.32| 40,00 | 88.36) 139-26/~10,2 s6.71}16.7| 95.21}-7.9
7 Steel B0.36 | 47.33 ] 257.61] 92.23-14. | 52,131-10.14] 271.96[-5.%
8 Steel 37.90 ) 54.23] a13.21{ 41.26/~ 8.8 €3.00k16.17] 431.93]-4.2
Load: Sinusoidal

4. DISCUSSION

The stress field of simply-supported, sinusoidally loaded laminated beam subjected to
a constant temperature and a linear temperature distribution as indicated in Tables 3 and
4 do not show severe disagreements from the stresses obtained by the classical solution.
The percentage differences between the stresses are within 10%,. However, for a tem-
perature variation which is a quadratic function of both longitudinal and transverse
coordinates as displayed in Table 5, the transverse shear stresses differ by 17-26.5%
through the thickness of a beam at a given x-coordinate location. The percentage
differences for the transverse normal stress vary between 18 and 36.6%, whereas the
longitudinal stress that may at times be used for design criteria remains relatively
unaffected with a percentage difference of 2.6-5.1%. Similar observations can be made
from the displayed data of Table 6 where a sinusoidal temperature field is used. The
percentage differences are somewhat less than those tabulated in Table 5 but larger than
those of Tables 3 and 4.



Thermal stresses in laminated beams 587

5. CONCLUSIONS
A displacement variation which incorporates the effects of transverse shear and normal

strains is used to formulate a thermal stress analysis procedure for laminated beams. The
interlaminar transverse shear and normal stresses in a heterogeneous beam are evaluated.
It is observed that for the case of heterogeneous beams subjected to a sinusoidal or a
transverse temperature distribution, the transverse normal and shear stresses deviate
significantly from those obtained from classical beam theory. However, for uniform and
linear temperature fields, the stresses obtained by the two different approaches were in
close agreement.
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